Here are the Anaconda ‘environment.yml’ specifications:
name: lda dependencies: - boto=2.47.0=py36_0 - bz2file=0.98=py36_0 - gensim=2.2.0=np113py36_0 - libgfortran=3.0.0=1 - mkl=2017.0.3=0 - nltk=3.2.4=py36_0 - numpy=1.13.1=py36_0 - openssl=1.0.2l=0 - pandas=0.20.2=np113py36_0 - pip=9.0.1=py36_1 - python=3.6.1=2 - python-dateutil=2.6.0=py36_0 - pytz=2017.2=py36_0 - readline=6.2=2 - requests=2.14.2=py36_0 - scipy=0.19.1=np113py36_0 - setuptools=27.2.0=py36_0 - six=1.10.0=py36_0 - smart_open=1.5.3=py36_0 - sqlite=3.13.0=0 - tk=8.5.18=0 - wheel=0.29.0=py36_0 - xz=5.2.2=1 - zlib=1.2.8=3 - pip: - html2text==2016.9.19 - smart-open==1.5.3
Here is the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
#! /usr/bin/env python3 def get_sibling_directory_path(sibling_directory_name): ''' returns path for a specified folder that is in the same parent directory as the current working directory ''' import os current_path = os.getcwd() last_separator_position = current_path.rfind(os.sep) parent_directory_path = current_path[0:last_separator_position] sibling_directory_path = os.path.join(parent_directory_path, sibling_directory_name) return(sibling_directory_path) def iter_documents_sqlite(database_name, table_name, col_name, key_col_name): ''' Iterates through database and returns each document (a list of tokens) ''' import sqlite3 con = sqlite3.connect(database_name) cur = con.cursor() cur.execute('SELECT COUNT(*) FROM {t}'.format(c=key_col_name, t=table_name)) response = cur.fetchall() num_documents = response[0][0] print('Number of documents in database is ', num_documents) try: for i in range(num_documents): cur.execute('SELECT ({c1}) FROM {t} WHERE {c2}=?' .format(c1=col_name, t=table_name, c2=key_col_name), (i, )) response = cur.fetchall() if response: document = response[0][0] else: document = '' yield(document.split()) finally: con.close() def get_documents(database_path, table_name, col_name, key_col_name): ''' Retrieves documents from database as a list of lists (1 document per list) Each list is composed of tokenized, processed words in the document in their original order 'database_path' - path and filename for the database 'table_name' - table name in the database where documents are stored 'col_name' - name of column in table where documents are stored 'key_col_name' - name of column for primary key in table where documents are stored ''' import sqlite3 documents = [] con = sqlite3.connect(database_path) cur = con.cursor() cur.execute('SELECT COUNT(*) FROM {t}'.format(c=key_col_name, t=table_name)) response = cur.fetchall() num_documents = response[0][0] try: for i in range(num_documents): cur.execute('SELECT ({c1}) FROM {t} WHERE {c2}=?' .format(c1=col_name, t=table_name, c2=key_col_name), (i, )) response = cur.fetchall() if response: document = response[0][0] else: document = '' documents.append(document.split()) return(documents) finally: con.close() def hms_string(sec_elapsed): ''' # downloaded from: # http://www.heatonresearch.com/2017/03/03/python-basic-wikipedia-parsing.html # https://github.com/jeffheaton/article-code/blob/master/python/wikipedia/wiki-basic-stream.py # Simple example of streaming a Wikipedia # Copyright 2017 by Jeff Heaton, released under the The GNU Lesser General Public License (LGPL). # http://www.heatonresearch.com ''' # Nicely formatted time string h = int(sec_elapsed / (60 * 60)) m = int((sec_elapsed % (60 * 60)) / 60) s = sec_elapsed % 60 return("{}:{:>02}:{:>05.2f}".format(h, m, s)) def print_models_update(model_id, elapsed_time, start_time, end_time, coherence_id): ''' Prints updates on models and runtimes while program is running 'model_id' - integer identifying model 'elapsed_time' - denotes runtime for model in seconds 'start_time' - denotes starting date and time for model run 'end_time' - denotes ending date and time for model run ''' print('Model {m} Coherence {c} run started at {st} and ended at {et}' .format(m=model_id, c=coherence_id, st=start_time, et=end_time)) print('Elapsed time: {}'.format(hms_string(elapsed_time))) print('\n') def run_coherences(lda_model, texts, corpus, dictionary, model_id, coh_type, topn, processes): ''' Calculates overall coherence and coherence per topic of LDA model and times the calculations 'u_mass' coherence requires only the corpus while the other coherence types require the original texts See Gensim documentation and Roder, Both, and Hinneburg (2015) Exploring the Space of Topic Coherence Measures 'lda_model' - trained Gensim LDA model 'texts' - list of lists of texts with 1 document per list; each document is a list of processed, tokenized words 'corpus' - Gensim corpus 'dictionary' - Gensim dictionary 'model_id' - integer identifying model 'coh_type' - type of coherence to calculate: 'u_mass', 'c_uci', 'c_nmpi', or 'c_v' 'topn' - from Gensim documentation: 'Integer corresponding to the number of top words to be extracted from each topic' 'processes' - from Gensim documentation: 'number of processes to use for probability estimation phase; any value less than 1 will be interpreted to mean num_cpus - 1; default is -1.' ''' from gensim.models.coherencemodel import CoherenceModel import time local_start_time = time.ctime(int(time.time())) start_time = time.time() if coh_type == 'u_mass': coh_model = CoherenceModel(model=lda_model, corpus=corpus, dictionary=dictionary, coherence=coh_type, topn=topn, processes=processes) else: coh_model = CoherenceModel(model=lda_model, texts=texts, dictionary=dictionary, coherence=coh_type, topn=topn, processes=processes) coherence = coh_model.get_coherence() coherence_topics = coh_model.get_coherence_per_topic() elapsed_time = time.time() - start_time local_end_time = time.ctime(int(time.time())) print_models_update(model_id, elapsed_time, local_start_time, local_end_time, coh_type) return(coherence, coherence_topics, elapsed_time) def run_lda_coherence(texts, corpus, dictionary, model_id, num_topics, alpha, eta, chunksize, passes, coherences, coh_topn, coh_processes, load=False): ''' Trains and saves Gensim LDA model, calls function to calculate overall topic coherences and coherences per topic, and saves log of the process Returns coherences, coherences per topic, and runtimes for training LDA model and calculating coherences 'texts' - list of lists of texts with 1 document per list; each document is a list of processed, tokenized words 'corpus' - Gensim corpus 'dictionary' - Gensim dictionary 'model_id' - integer identifying model 'num_topics' - number of topics for the LDA model to extract 'alpha' - LDA hyperparameter that smooths document-topic distributions 'eta' - LDA hyperparameter that smooths topic-word distributions; also known as 'beta' 'chunksize' - number of documents to process per core (for multicore LDA training) 'passes' - number of times to pass over the entire corpus during training 'coherences' - list of coherences to calculate; can include 'u_mass', 'c_uci', 'c_nmpi', and/or 'c_v' 'coh_topn' - from Gensim documentation for coherence calculations: 'Integer corresponding to the number of top words to be extracted from each topic' 'coh_processes' - from Gensim documentation for coherence calculations: 'number of processes to use for probability estimation phase; any value less than 1 will be interpreted to mean num_cpus - 1; default is -1.' 'load' - if 'True', load saved model instead of training a new one ''' from gensim.models.ldamulticore import LdaMulticore from gensim.models.ldamodel import LdaModel import logging import time import os eval_every = None # do not evaluate perplexity save_directory_name = 'model' + str(model_id) save_log_directory_name = 'logs' if not os.path.exists(save_directory_name): os.makedirs(save_directory_name) if not os.path.exists(save_log_directory_name): os.makedirs(save_log_directory_name) returns = [corpus.num_docs, model_id, num_topics, alpha, eta, chunksize, passes, eval_every, coh_topn, coh_processes] log_filename = os.path.join(save_log_directory_name, 'log_lda_model' + str(model_id) + '.txt') logging.basicConfig(filename=log_filename, format='%asctimes : %(levelname)s : %(message)s', level=logging.DEBUG) local_start_time = time.ctime(int(time.time())) start_time = time.time() if load: lda = LdaModel.load(os.path.join(save_directory_name, 'lda_model' + str(model_id))) else: if alpha == 'auto': # alpha 'auto' not implemented for LdaMulticore lda = LdaModel(corpus=corpus, id2word=dictionary, num_topics=num_topics, alpha=alpha, eta=eta, chunksize=chunksize, passes=passes, random_state=7111914, eval_every=eval_every) else: lda = LdaMulticore(corpus=corpus, id2word=dictionary, num_topics=num_topics, alpha=alpha, eta=eta, chunksize=chunksize, passes=passes, random_state=7111914, eval_every=eval_every) elapsed_time = time.time() - start_time local_end_time = time.ctime(int(time.time())) print_models_update(model_id, elapsed_time, local_start_time, local_end_time, 'none') if not load: lda.save(os.path.join(save_directory_name, 'lda_' + save_directory_name)) returns.append(elapsed_time) for i in range(len(coherences)): coh, coh_topics, elapsed_time = run_coherences(lda, texts, corpus, dictionary, model_id, coherences[i], coh_topn, coh_processes) returns.append(coh) returns.append(coh_topics) returns.append(elapsed_time) return(returns) def run_lda_models(texts, corpus, dictionary, model_id, topic_nums, alphas, etas, chunksizes, passes, coherences, coh_topns, coh_processes, load=False): ''' Trains and saves multiple Gensim LDA models with different combinations of parameters Each Gensim LDA model has coherences and coherences per topic calculated along with runtimes for the training and calculations These results are saved to a Pandas DataFrame and returned Gensim LDA models are trained on different combinations of the parameters 'topic_nums', 'alphas', 'etas', 'chunksizes', 'passes', and 'coh_topns' 'texts' - list of lists of texts with 1 document per list; each document is a list of processed, tokenized words 'corpus' - Gensim corpus 'dictionary' - Gensim dictionary 'model_id' - integer identifying model 'topic_nums' - list of numbers of topics for LDA models to extract 'alphas' - list of LDA hyperparameters 'alpha' that smooths document-topic distributions 'etas' - list of LDA hyperparameters 'eta' that smooths topic-word distributions; also known as 'beta' 'chunksizes' - list of numbers of documents to process per core (for multicore LDA training) 'passes' - list of numbers of times to pass over the entire corpus during training 'coherences' - list of coherences to calculate; can include 'u_mass', 'c_uci', 'c_nmpi', and/or 'c_v' 'coh_topns' - list of 'coh_topns'; from Gensim documentation for coherence calculations for each 'coh_topn': 'Integer corresponding to the number of top words to be extracted from each topic' 'coh_processes' - from Gensim documentation for coherence calculations: 'number of processes to use for probability estimation phase; any value less than 1 will be interpreted to mean num_cpus - 1; default is -1.' 'load' - if 'True', load saved model instead of training a new one ''' import pandas as pd from itertools import product import time columns = ['num_documents', 'model_ID', 'num_topics', 'alpha', 'eta', 'chunksize', 'passes', 'eval_every', 'coh_topn', 'coh_processes', 'lda_runtime'] coh_outcomes = ['coherence', 'coh_topics', 'coh_runtime'] coh_columns = [e[0] + '_' + e[1] for e in list(product(coherences, coh_outcomes))] columns.extend(coh_columns) columns.append('overall_runtime') lda_runs = [] # NOTE TO SELF: yes, the matryoshka nested loops are kinda ridiculous; # need to create lists of different combinations of parameters for i in range(len(topic_nums)): for j in range(len(alphas)): for k in range(len(etas)): for l in range(len(chunksizes)): for m in range(len(passes)): for n in range(len(coh_topns)): start_time = time.time() lda_run = run_lda_coherence(texts, corpus, dictionary, model_id, topic_nums[i], alphas[j], etas[k], chunksizes[l], passes[m], coherences, coh_topns[n], coh_processes, load) elapsed_time = time.time() - start_time lda_run.append(elapsed_time) lda_runs.append(lda_run) model_id += 1 results = pd.DataFrame.from_records(lda_runs, columns=columns) return(results) def main(): ''' Testing chunksize and iterations numbers: more iterations provide greater probability that documents will converge (i.e., the LDA model provides good quality results) but at the cost of longer runtime This testing tries to determine which values of 'chunksize' will adequately balance these two outcomes ''' import os import gensim #wiki_folder = '41_fast_corpus' wiki_folder = os.path.join('41_fast_corpus', 'sampling_interval_05_5578331') wiki_path = get_sibling_directory_path(wiki_folder) dictionary_filename = 'wiki_dictionary.dict' corpus_filename = 'wiki_corpus.mm' dictionary_filepath = os.path.join(wiki_path, dictionary_filename) corpus_filepath = os.path.join(wiki_path, corpus_filename) database_name = 'wiki_token_docs.sqlite' database_path = os.path.join(wiki_path, database_name) table_name = 'articles' column_name = 'text' key_column_name = 'key' print('Retrieving documents') documents = iter_documents_sqlite(database_path, table_name, column_name, key_column_name) #documents = get_documents(database_path, table_name, column_name, # key_column_name) print('Documents retrieved') wiki_dictionary = gensim.corpora.Dictionary.load(dictionary_filepath) wiki_corpus = gensim.corpora.MmCorpus(corpus_filepath) print('Dictionary and corpus loaded') model_id = 104 topic_nums = [30] alphas = ['auto'] # 'auto' worked best in prior testing etas = [None] # 'None' worked best in prior testing chunksizes = [100000] passes = [1] coherences = ['c_v'] # 'c_v' best results: Roder, Both, Hinneburg 2015 coh_topns = [10] # default value coh_processes = -1 # default value load_model = False results = run_lda_models(documents, wiki_corpus, wiki_dictionary, model_id, topic_nums, alphas, etas, chunksizes, passes, coherences, coh_topns, coh_processes, load_model) csv_filename = 'model_results.csv' #results.to_csv(csv_filename) # WARNING: changing coherences will alter the column headings and/or the # number of columns; append to existing 'csv' file only if coherences has # not been altered if os.path.isfile(csv_filename): results.to_csv(csv_filename, mode='a', header=False) else: results.to_csv(csv_filename) return() if __name__ == '__main__': main() |