Here are the Anaconda ‘environment.yml’ specifications:
name: pandas channels: - defaults dependencies: - mkl=2017.0.1=0 - numpy=1.13.0=py36_0 - openssl=1.0.2l=0 - pandas=0.20.2=np113py36_0 - pip=9.0.1=py36_1 - python=3.6.1=2 - python-dateutil=2.6.0=py36_0 - pytz=2017.2=py36_0 - readline=6.2=2 - setuptools=27.2.0=py36_0 - six=1.10.0=py36_0 - sqlite=3.13.0=0 - tk=8.5.18=0 - wheel=0.29.0=py36_0 - xz=5.2.2=1 - zlib=1.2.8=3 prefix: [removed]
Here is the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
#! /usr/bin/env python3 def get_sibling_directory_path(sibling_directory_name): ''' returns path for a specified folder that is in the same parent directory as the current working directory ''' import os current_path = os.getcwd() last_separator_position = current_path.rfind(os.sep) parent_directory_path = current_path[0:last_separator_position] sibling_directory_path = os.path.join(parent_directory_path, sibling_directory_name) return(sibling_directory_path) def count_coappearances(table, col_name1, col_name2): ''' Calculates each character's number of appearances, their number of co-appearances, and their number of co-appearances as a proportion of how many times either appeared 'table' - Boolean table/dataframe (i.e., all cells are zeroes or ones); each column represents a character; each row represents a potential appearance; ones represent appearances 'col_name1', 'col_name2' - each is a name of a column in 'table' ''' n_appears_1 = table[col_name1].sum() n_appears_2 = table[col_name2].sum() n_coappears = (table[col_name1] & table[col_name2]).sum() n_either_appears = (table[col_name1] | table[col_name2]).sum() if n_either_appears > 0: prop_coappears = n_coappears / n_either_appears else: prop_coappears = None return(n_appears_1,n_appears_2, n_coappears, prop_coappears) def create_coappears_dataframe(table, pairs): ''' Creates table with each character's number of appearances, each character pair's number of co-appearances, and each character pair's number of co-appearances as a proportion of the number of times either character appeared 'table' - Boolean table/dataframe (i.e., all cells are zeroes or ones); each column represents a character; each row represents a potential appearance; ones represent appearances 'pairs' - list of pairs of characters ''' import pandas as pd col_names = ['source', # name required for D3 force network graph 'target', # name required for D3 force network graph 'number_appearances_char1', 'number_appearances_char2', 'number_coappearances', 'proportion_coappearances'] coappears_list = [] for e in pairs: n_appears1, n_appears2, n_coappears, prop_coappears = ( count_coappearances(table, e[0], e[1])) coappears_list.append([e[0], e[1], n_appears1, n_appears2, n_coappears, prop_coappears]) coappears = pd.DataFrame.from_records(coappears_list, columns=col_names) return(coappears) def prettify_character_names(table): ''' Replaces 'snoopy and personas' with 'snoopy' and capitalizes names in first two columns of table ''' original = 'snoopy and personas' replacement = 'snoopy' table.iloc[:, 0] = table.iloc[:, 0].str.replace(original, replacement) table.iloc[:, 1] = table.iloc[:, 1].str.replace(original, replacement) table.iloc[:, 0] = table.iloc[:, 0].str.title() table.iloc[:, 1] = table.iloc[:, 1].str.title() return(table) def list_to_prettified_df(a_list, counts_df): ''' Converts list of Peanuts character names to table/dataframe with rows representing every unique pair of characters Character names are capitalized and 'snoopy and personas' is replaced with 'snoopy' ''' from itertools import combinations pairs = list(combinations(a_list, 2)) coappears = create_coappears_dataframe(counts_df, pairs) coappears = prettify_character_names(coappears) return(coappears) def read_text_file(text_filename, as_string=False): ''' reads each line in a text file as a list item and returns list by default if 'as_string' is 'True', reads entire text file as a single string ''' text_list = [] try: with open(text_filename) as text: if as_string: # reads text file as single string text_list = text.read().replace('\n', '') else: # reads each line of text file as item in a list for line in text: text_list.append(line.rstrip('\n')) text.close() return(text_list) except: return('There was an error while trying to read the file') def write_list_to_text_file(a_list, text_file_name, overwrite_or_append='a'): ''' writes a list of strings to a text file appends by default; change to overwriting by setting to 'w' instead of 'a' ''' try: textfile = open(text_file_name, overwrite_or_append, encoding='utf-8') for element in a_list: textfile.write(element) textfile.write('\n') finally: textfile.close() def append_commas_to_list_elements_except_last(a_list): ''' Appends a comma to each element of a list except for the last element ''' a_list = [e + ',' for e in a_list] a_list[-1] = a_list[-1][:-1] return(a_list) def assemble_json(nodes_json_file, links_json_file, assembled_file): ''' Reads JSON files for information on nodes and links of network and assembles it into a single JSON file that designates the nodes and links ''' nodes = read_text_file(nodes_json_file) links = read_text_file(links_json_file) nodes_start = ['{', '"nodes": ['] nodes_end = ['],'] links_start = ['"links": ['] links_end = [']', '}'] nodes = append_commas_to_list_elements_except_last(nodes) links = append_commas_to_list_elements_except_last(links) write_list_to_text_file(nodes_start, assembled_file, 'w') write_list_to_text_file(nodes, assembled_file) write_list_to_text_file(nodes_end, assembled_file) write_list_to_text_file(links_start, assembled_file) write_list_to_text_file(links, assembled_file) write_list_to_text_file(links_end, assembled_file) def convert_to_color_strings(table): ''' Converts table of red-green-blue color specifications into strings 'table' - dataframe of 4 columns with each row representing a color; the 2nd, 3rd, and 4th columns represent red, green, and blue, respectively, with values ranging from 0 to 255 ''' rgb_strings = [] for i in range(len(table)): r = table.iloc[i, 1] g = table.iloc[i, 2] b = table.iloc[i, 3] rgb_string = 'rgb(' + str(r) + ', ' + str(g) + ', ' + str(b) + ')' rgb_strings.append(rgb_string) return(rgb_strings) def main(): ''' Calculates the strength of Peanuts' characters relationships in terms of raw numbers (i.e., number of comics in which they appear together, or co-appearances) and as a proportion of the number of comics in which either character appeared Calculates relationship strengths for 3 sets of characters: all characters, the 17 characters with the most appearances, and all characters who are distinctly named and appear in the strip (as opposed to merely being mentioned) JSON output is in format suitable for display as a D3 network force graph ''' import os import pandas as pd from itertools import combinations data_source_folder = '30_character_appear' data_source_path = get_sibling_directory_path(data_source_folder) data_source_file = 'counts_by_comic_1_overall.csv' data_source_filepath = os.path.join(data_source_path, data_source_file) counts = pd.read_csv(data_source_filepath) # all characters character_pairs = list(combinations(counts.columns[1:], 2)) coappears = create_coappears_dataframe(counts, character_pairs) coappears.to_csv('coappearances_all.csv', index=False) #coappears.to_json('coappearances_all.json', orient='records', lines=True) # top 17 characters top17_list = ['charlie brown', 'snoopy and personas', 'lucy', 'linus', 'peppermint patty', 'sally', 'marcie', 'woodstock', 'schroeder', 'patty', 'violet', 'rerun', 'spike', 'shermy', 'pig-pen', 'frieda', 'franklin'] top17_coappears = list_to_prettified_df(top17_list, counts) top17_coappears.to_csv('coappearances_top17.csv', index=False) links_json_file = 'top17_coappearances.json' top17_coappears.to_json(links_json_file, orient='records', lines=True) top17_colors = pd.read_csv('character_colors.csv') top17_rgb_strings = convert_to_color_strings(top17_colors) top17_pretty = [e.title() for e in top17_list] top17_pretty[1] = 'Snoopy' group_placeholder = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 1, 2, 3, 4, 5, 1, 2] top17_appears = counts.ix[:, top17_list].sum().tolist() top17_nodes = [('id', top17_pretty), ('group', group_placeholder), ('n_appears', top17_appears), ('colors', top17_rgb_strings)] top17_nodes = pd.DataFrame.from_items(top17_nodes) nodes_json_file = 'top17_nodes.json' top17_nodes.to_json(nodes_json_file, orient='records', lines=True) assembled_file = 'top17_network.json' assemble_json(nodes_json_file, links_json_file, assembled_file) # all distinct, named characters that appear (as opposed to only mentioned) adn_list = ['charlie brown', 'snoopy and personas', 'lucy', 'linus', 'peppermint patty', 'sally', 'marcie', 'woodstock', 'schroeder', 'patty', 'violet', 'rerun', 'spike', 'shermy', 'pig-pen', 'frieda', 'franklin', 'peggy jean', 'molly volley', 'charlotte braun', 'crybaby boobie', 'tapioca pudding', 'pigtailed girl', 'kite-eating tree', 'andy', 'olaf', 'eudora', 'truffles', 'roy', 'cormac', 'thibault', 'sophie', 'poochie', 'joe richkid', 'joe agate', 'naomi', 'maynard', 'lydia', 'lila', 'larry', 'royanne', 'harold', 'benny', 'clara', 'emily', 'ethan', 'floyd', 'shirley', 'belle', 'faron', 'harriet', 'bill', 'conrad', 'olivier', 'raymond', 'fred', 'wilson'] adn_coappears = list_to_prettified_df(adn_list, counts) adn_coappears.to_csv('coappearances_adn.csv', index=False) links_json_file = 'adn_coappearances.json' adn_coappears.to_json(links_json_file, orient='records', lines=True) gray_rgb_strings = ['rgb(169, 169, 169)'] * (len(adn_list) - len(top17_list)) adn_rgb_strings = top17_rgb_strings adn_rgb_strings.extend(gray_rgb_strings) adn_pretty = [e.title() for e in adn_list] adn_pretty[1] = 'Snoopy' group_placeholder = [1] * len(adn_list) adn_appears = counts.ix[:, adn_list].sum().tolist() adn_nodes = [('id', adn_pretty), ('group', group_placeholder), ('n_appears', adn_appears), ('colors', adn_rgb_strings)] adn_nodes = pd.DataFrame.from_items(adn_nodes) nodes_json_file = 'adn_nodes.json' adn_nodes.to_json(nodes_json_file, orient='records', lines=True) assembled_file = 'adn_network.json' assemble_json(nodes_json_file, links_json_file, assembled_file) if __name__ == '__main__': main() |